
NASA Technical Memorandum 1 0 0 6 6 3 

RECENT ADVANCES IN TRANSONIC 
COMPUTATIONAL AEROELASTICITY 

JOHN T. BATINA 
ROBERT M. BENNETT 
DAVID A. SEIDEL 
HERBERT J. CUNNINGHAM 
SAMUEL R. BLAND 

SEPTEMBER 1988 

National Aeronautics and 
Space Administratlon 
Langley Rmemrch Center 
Hampton, Virginia 23665-5225 



RECENT ADVANCES IN TRANSONIC COMPUTATIONAL AEROELASTICITY 

John T. Batina 
Robert M. Bennett 

David A. Seidel 
Herbert J. Cunningham 

Samuel R. Bland 

NASA Langley Research Center 
Hampton, Virginia 23665-5225 

Abst rac t  

A tra sonic unsteady aerodynamic and aeroelasticity code called CAP-TSD h been developed 

for application to realistic aircraft configurations. The code permits the calculation of steady 

and unsteady flows about complete aircraft configurations for aeroclastic analysis in the flutter 

critical transonic speed range. The CAP-TSD code uses a time-accurate approximate 

factorization (AF) algorithm for solution of the unsteady transonic small-disturbance potential 

equation. The paper gives an overview of the CAP-TSD code development effort and presents 

results which demonstrate various capabilities of the code. Calculations are presented for 

several configurations including the General Dynamics one-ninth scale F-16C aircraft model 

and the ONERA M6 wing. Calculations are also presented from a flutter analysis of a 45" 

sweptback wing which agree well with the experimental data. The paper presents descriptions 

of the CAP-TSD code and algorithm details along with results and comparisons which 

demonstrate these recent developments in transonic computational aeroelasticity. 

Notation 
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C, Cr 

CP pressure coefficient 

airfoil chord and wing reference chord, respectively 
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reduced frequency, ocr/2U 

freestream Mach number 

time, nondimensionalized by freestream speed and wing reference chord 

freestream speed 

mean angle of attack and amplitude of pitch oscillation, respectively 

ratio of specific heats 

nondimensional time step 

fractional semispan 

ratio of wing mass to mass of air in the truncated cone that encloses the wing 

freestream flow density 

dist u r bance velocity potential 

angular frequency and natural frequency of the first torsion mode, respectively 

Subscr iDts  

t ta i l  

W wing 

Introduction 

Presently, considerable research is being conducted to develop finite-difference computer 

codes for calculating transonic unsteady aerodynamics for aeroelastic applications [l] .  These 

computer codes are being developed to provide accurate methods of calculating unsteady airloads 

for the prediction of aeroelastic phenomena such as flutter and divergence. For example, the 

CAP-TSD [ 2 ]  unsteady transonic small-disturbance (TSD) code was recently developed for 

transonic aeroelastic analyses of Complete aircraft configurations. The name CAP-TSD is an 
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acronym for computational Aeroelasticity Program - Lransonic Small Disturbance. The new 

code permits the calculation of unsteady flows about complete aircraft for aeroelastic analysis 

in the flutter critical transonic speed range. The code can treat configurations with arbitrary 

combinations of lifting surfaces and bodies including canard, wing, tail, control surfaces, tip 

launchers, pylons, fuselage, stores, and nacelles. Steady and unsteady pressure comparisons 

were presented for numerous cases which demonstrated the geometrical applicability of CAP- 

TSD [2-31. These calculated results were generally in good agreement with available 

experimental pressure data which validated CAP-TSD for multiple component applications with 

mutual aerodynamic interference effects. Aeroelastic applications of CAP-TSD were presented 

by Cunningham, et al. [4] and Bennett, et al. [5] for simple well-defiped wing cases. The cases 

were selected as a first step toward performing aeroelastic analyses for complete aircraft 

configurations. The calculated flutter boundaries compared well with the experimental data for 

subsonic, transonic, and supersonic freestream Mach numbers, which gives confidence in CAP- 

TSD for aeroelastic prediction. 

The CAP-TSD code uses a time-accurate approximate factorization (AF) algorithm recently 

developed by Batina [6] for solution of the unsteady TSD equation. The AF algorithm involves a 

Newton linearization procedure coupled with an internal iteration technique. The algorithm was 

shown to be efficient for application to steady or unsteady transonic flow problems. It can 

provide accurate solutions in only several hundred time steps, yielding a significant 

computational cost savings when compared to alternative methods. For reasons of practicality 

and affordability, an efficient algorithm and a fast computer code are requirements for realistic 

aircraft applications. 

Recently, several algorithm modifications have been made which have improved the stability 

These algorithm modifications of the AF algorithm and the accuracy of the results [7,8]. 
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include: (1) an Engquist-Osher (E-0) type-dependent switch to more accurately and 

efficiently treat regions of supersonic flow, (2) extension of the E-0  switch for second-order- 

accurate spatial differencing in supersonic regions to improve the accuracy of the results, (3) 

nonisentropic effects to more accurately treat cases with strong shocks, and (4) nonreflecting 

far field boundary conditions for more accurate unsteady applications. The work has been a 

major research activity over the past two and one-half years within the Unsteady Aerodynamics 

Branch at NASA Langley Research Center. The purpose of the paper is to give an overview of the 

CAP-TSD code development effort and report on the recent algorithm changes and code 

improvements. The paper documents these developments and presents results which 

demonstrate these recent advances in transonic computational aeroelasticity. 

Transonic Small Disturbance Eauation 

The flow is assumed to be governed by the general frequency modified TSD potential equation 

which may be written as 

Several choices are available for the coefficients F, G, and H depending upon the assumptions 

used in deriving the TSD equation. For transonic applications, the coefficients are herein 

defined as 

1 2 1 2 
.- 2 

F = - ? ( y + I ) M ,  G = - ( y - 3 ) M ,  H = - ( ^ / -  1)M' 

The linear potential equation is recovered by simply setting F, G, and H equal to zero. 
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Entropy and vorticity modifications to TSD theory, to treat cases with strong shock waves, 

have been developed as described by Batina [8]. These modifications include: (1) an alternative 

streamwise flux in the TSD equation which was derived by an asymptotic expansion of the Euler 

equations, (2) a modified velocity vector defined as the sum of potential and rotational parts 

which in turn modified the streamwise flux, and (3) the calculation and convection of entropy 

throughout the flow field. The modified theory includes the effects of entropy and vorticity 

while retaining the relative simplicity and cost efficiency of the TSD formulation [8]. 

-ximate Factor izat ion Alaor i thm 

A time-accurate approximate factorization algorithm was developed [6-81 to solve the 

unsteady TSD equation including entropy and vorticity effects. In this section, the AF algorithm 

is briefly described. 

General Descr ipt ion 

The AF algorithm consists of a Newton linearization procedure coupled with an internal 

iteration technique. For unsteady flow calculations, the solution procedure involves two steps. 

First, a time linearization step is performed to determine an estimate of the potential field. 

Second, internal iterations are performed to minimize linearization and factorization errors. 

Specifically, the TSD equation is written in general form as 

R ($"+*) = 0 ( 3 )  

where +n+l  represents the unknown potential field at time level (n+l). The solution to Eq. (3) 

is then given by the Newton linearization of Eq. (3) about Q* 
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In Eq. (4), @* is the currently available value of @ n + l  and A@ = $n+l - $*. During convergence 

of the iteration procedure, A@ will approach zero so that the solution will be given by $ n + l  = 

@*. In general, only one or two iterations are required to achieve acceptable convergence. 

Mat hernat ical Formulation 

The AF algorithm is formulated by first approximating the time-derivative terms by 

second-order-accurate finite-difference formulae. The TSD equation is rewritten by 

substituting @ = @* + A@ and neglecting squares of derivatives of A@ (which is equivalent to 

applying Eq. (4) term by term). The resulting equation is then rearranged and the left-hand 

side is approximately factored into a triple product of operators yielding 

where the operators Lg, Lq, Lg and residual R were derived and presented in Ref. [6]. In Eq. 

(5) CJ is a relaxation parameter which is normally set equal to 1.0. To accelerate convergence 

to steady-state, the residual R may be over-relaxed using o > 1. Equation (5) is solved using 

three sweeps through the grid by sequentially applying the operators Q, Lq, Ly as 

I 

- 
6 - sweep: Le A@ = - 0 R 



= -  
q - sweep: L A$ = A $  

rl 

The AF algorithm uses an Engquist-Osher (E-0) type-dependent switch to change the spatial 

differencing from central differencing in regions of subsonic flow to upwind differencing in 

regions of supersonic flow. This, of course, allows for the correct numerical description of the 

physical domain of dependence. The E-0 switch is based on sonic reference conditions and does 

not admit expansion shocks as part of the solution. Use of the E-0 switch also generally 

increases computational efficiency because of the larger time steps which may be taken. 

Furthermore, the E -0  switch of the A F  algorithm has been recently extended for second-order 

spatial accuracy in supersonic regions of the flow. Details of these developments are reported 

by Batina 171. 

. .  Boundarv Co ndi t tons 

The flow tangency boundary conditions are imposed along the mean plane of the respective 

lifting surfaces and the wakes are assumed to be planar extensions from the trailing edges to the 

downstream boundary of the finite-difference grid. The numerical implementation of these 

conditions [2) allows for coplanar as well as non-coplanar combinations of horizontal (canard, 

wing, horizontal tail, launchers) and vertical (pylons, vertical tail) surfaces. Bodies such as 

the fuselage, stores, and nacelles are treated using simplified boundary conditions on a 

prismatic surface rather than on the true surface [2]. The method is consistent with the small- 

disturbance approximation and treats bodies with sufficient accuracy to obtain the correct 

global effect on the flow field without the use of special grids or complicated coordinate 
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transformations. This type of modeling is similar to that of Boppe and Stern 191 where good 

agreement was shown in comparison with experimental data for configurations with a fuselage 

and flow-through nacelles. 

For unsteady applications, nonreflecting far field boundary conditions similar to those of 

Whitlow [lo] are used. The nonreflecting conditions absorb most of the waves that are incident 

on the grid boundaries and consequently allow the use of smaller computational grids. These 

boundary conditions are consistent with the AF solution procedure and are described in more 

detail by Batina [7]. 

Aer oela s t ic Solut ion 

In this section the aeroelastic computational procedures are described including the 

equations of motion and the time-marching solution. 

Equations of Motion 

The aeroelastic equations of motion are based on a right-hand orthogonal coordinate system 

with the x-direction defined as positive downstream and the z-direction positive upward [4]. 

The presentation herein is limited to the case of an isolated wing with motion in the z-direction 

from an undisturbed position in the z = 0 plane. The equations of motion may be written as 

where q is a vector of generalized displacements, M is the generalized mass matrix, C is the 

damping matrix, K is the stiffness matrix, and Q is the vector of generalized aerodynamic 

forces. 
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Time-Marchina S o lu t i on  

The aeroelastic solution procedure for integrating Eq. (7) is similar to that described by 

Edwards, et ai. [l 11. Reference [l 11 describes for a two-dimensional, two-degree-of-freedom 

system an aeroelastic solution in terms of a state equation formulation. By a parallel 

formulation, a linear state equation is developed from Eq. (7) which is solved numerically using 

the modified state-transition matrix integrator of Ref. [ l l ] .  This integrator was shown to be 

superior to six alternative structural integration algorithms [12]. 

For aeroelastic analysis, two steps are generally required in performing the calculations. In 

the first step, the steady-state flow field is calculated to account for wing thickness, camber, 

and mean angle of attack thus providing the starting flow field for the aeroelastic analysis. The 

second step is to prescribe an initial disturbance to begin the structural integration. 

Disturbance velocities in one or more modes, rather than displacements, have been found to be 

distinctly superior in avoiding nonphysical, strictly numerical transients and their possible 

associated instabilities. In determining a flutter point, the freestream Mach number M and the 

associated freestream speed U are usually held fixed. A judiciously chosen value of the dynamic 

pressure pU2/2 is used to compute the free decay transients. These resulting transients of the 

generalized coordinates are analyzed for their content of damped or growing sine-waves, with 

the rates of growth or decay indicating whether the dynamic pressure is above or below the 

flutter value. This analysis then indicates whether to increase or decrease the value of dynamic 

pressure in subsequent runs to determine a neutrally stable result. 

CAP-TSD Code 

The AF algorithm is the basis of the CAP-TSD code for transonic unsteady aerodynamic and 

aeroelastic analysis of realistic aircraft configurations. The present capability has the option of 
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half-span modeling for symmetric cases or full-span modeling to allow the treatment of 

antisymmetric mode shapes, fuselage yaw, or unsymmetric configurations such as an oblique 

wing or unsymmetric wing stores. In the present coding of the AF algorithm, the time 

derivatives are implemented for variable time stepping to allow for step-size cycling to 

accelerate convergence to steady state. Also, since the Lg, Lq, and L( operators only contain 

derivatives in their respective coordinate directions, all three sweeps of the solution procedure 

have been fully vectorized. 

Results and Discuss ion 

Results are presented for several configurations including the General Dynamics one-ninth 

scale F-16C aircraft model [13,14], the ONERA M6 wing [15], and a 45" sweptback wing [16, 

171, to demonstrate various capabilities of the CAP-TSD code. 

I D W s  F-16C Aircraft Model Results 

To demonstrate application of CAP-TSD to a realistic aircraft configuration, results were 

obtained for the General Dynamics one-ninth scale F-16C aircraft model. Shown in Fig. 1 are 

the F-16C components that are modeled using CAP-TSD. The F-16C is modeled using four 

lifting surfaces and two bodies. The lifting surfaces include: (1) the wing with leading and 

trailing edge control surfaces, (2) the launcher, (3) a highly-swept strake, aft strake, and 

shelf surface, and (4) the horizontal tail. The bodies include: (1) the tip missile, and (2) the 

fuselage. In these calculations, the freestream Mach number was M = 0.9 and the aircraft was 

at 2.38" angle of attack. Also, the leading edge control surface of the wing was deflected upwards 

2" for comparison with the experimental steady pressure data of Ref. [14]. These steady 

pressure comparisons are made to assess the accuracy of CAP-TSD for complete airplane 
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applications. There are no unsteady experimental data to validate the CAP-TSD code for time 

accurate F-16C calculations. Nonetheless, an unsteady calculation was performed to 

domonslrate the time-accurate capability. For simplicity, the results were obtained for a rigid 

pitching motion where the entire F-16C aircraft was forced to oscillate about the model moment 

reference axis at a reduced frequency of k = 0.1. The oscillation amplitude was chosen as ai = 

0.5", and 300 steps per cycle of motion were computed corresponding to At = 0.1047. Parallel 

results were also obtained for the wing alone to investigate the aerodynamic interference effects 

of the additional aircraft components on wing unsteady pressures. 

Steady pressure comparisons for the F-16C aircraft model are presented in Fig. 2 for three 

span stations of the wing and one span station of the tail. For this case, there is a moderately 

strong shock wave on the upper surface of the wing and the CAP-TSD pressures agree well with 

the experimental pressures. For the tail, the flow is predominantly subcritical and the CAP- 

TSD pressures again agree well with the experimental data. 

Unsteady pressure distributions along the wing and tail upper surfaces are shown in Fig. 3 

for the entire F-16C aircraft undergoing a rigid pitching motion. These unsteady pressure 

results are presented at the same span stations as the steady-state results (Fig. 2). Two sets of 

calculated pressures are compared corresponding to complete airplane and wing alone modeling. 

As shown in Fig. 3, there is a relatively large shock pulse in the real part of the wing upper 

surface pressures due to the motion of the shock wave. This shock pulse is of larger magnitude 

and is located further downstream in the complete airplane model. These features are attributed 

to a stronger steady-state shock on the upper surface of the wing produced by the accelerated 

flow about the fuselage and the launcherhip missile. For the tail, the unsteady pressures are 

relatively small in comparison with the wing pressures arid thus were plotted on an expanded 

scale. The tail is located considerably aft of the pitch axis and thus its motion is plunge 
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dominated which results in smaller airloads 

these pressures are nearly 90" out of phase 

for the low value of k considered. Furthermore, 

with the aircraft motion since the real components 

are small compared to the imaginary components. 

ONERA M6 Wina Results 

To test the entropy and vorticity modifications to TSD theory, applications were performed 

for the ONERA M6 wing [15]. The M6 wing has an aspect ratio of 3.8, a leading edge sweep angle 

of 30°, and a taper ratio of 0.562. The airfoil section of the wing is the ONERA "D" airfoil 

which is a 10% maximum thickness-to-chord ratio symmetric section. Pressures were 

calculated at M = 0.92 with the wing at 0" mean angle of attack. These conditions correspond to 

an AGARD test case for assessment of inviscid flow field methods 1151 and were selected for 

comparison with the tabulated Euler results of Rizzi contained therein. 

Calculations were performed using: (a) unmodified TSD theory and (b) TSD with entropy 

and vorticity effects. Steady pressure distributions along three span stations (7 = 0.08, 0.47, 

and 0.82) of the wing are presented in Fig. 4 from both solutions. For this case, the flow is 

symmetric about the wing with shocks on the upper and lower surfaces. As shown in Fig. 4(a), 

the results from the unmodified TSD theory compare well with the Euler results in predicting 

the leading edge suction peak and the overall pressure levels. However, the shock is located too 

far aft and is too strong outboard near the tip in comparison with the Euler calculation. When 

the entropy and vorticity modifications are included in the calculation, the shock is displaced 

forward from the previous solution, as shown in Fig. 4(b). Here the shock location and shock 

strength are in very good agreement with the Euler results at all three span stations on the 

wing. Consequently, the steady pressure distributions from the modified TSD theory now 

compare very well with the Euler pressures. 
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Wina Flutter Results 

To assess the CAP-TSD code for flutter applications, a simple well-defined wing case was 

selected as a first step toward performing aeroelastic analyses for complete aircraft 

configurations 14,511. The wing being analyzed is a semispan wind-tunnel-wall-mounted model 

that has a quarter-chord sweep angle of 45", a panel aspect ratio of 1.65, and a taper ratio of 

0.66 [16]. The wing is an AGARD standard aeroelastic configuration which was tested in the 

Transonic Dynamics Tunnel (TDT) at NASA Langley Research Center [17]. A planview of the 

wing is shown in Fig. 5. The wing has a NACA 65A004 airfoil section and was constructed of 

laminated mahogany. In order to obtain flutter for a wide range of Mach number and density 

conditions in the TDT, holes were drilled through the wing to reduce its stiffness. To maintain 

the aerodynamic shape of the wing, the holes were filled with a rigid foam plastic. The wing is 

modeled structurally using the first four natural vibration modes which are illustrated in Fig. 

6. These modes which are numbered 1 through 4 represent first bending, first torsion, second 

bending, and second torsion, respectively, as determined by a finite element analysis. The 

modes have natural frequencies which range from 9.6 Hz for the first bending mode to 91.54 Hz 

for the second torsion mode. 

Flutter calculations were performed for the 45" sweptback wing using CAP-TSD to assess 

the code for aeroelastic applications. Two sets of results are presented corresponding to: (1) 

using the linear potential equation (F = G = H = 0) and modeling the wing aerodynamically as a 

flat plate (zero thickness) and (2) using the complete (nonlinear) TSD equation and including 

wing thickness. The first set of results allows for direct comparison with parallel linear 

theory calculations performed using the FAST subsonic kernel function program [18]. The 

second set of results more accurately models the wing geometry as well as the flow physics. All 

of the results are compared with the experimental flutter data of Yates, et al. [17] which spans 
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the range, 0.338 I M I 1.141. 

Comparisons of flutter characteristics from the linear calculations with the experimental 

data are given in Fig. 7. The flutter speed index (defined as U/(bo wu G)) as a function of 

freestream Mach number is shown in the figure. The experimental flutter data defines a typical 

transonic flutter "dip" with the bottom near M = 1.0 for this case. The bottom of the dip in 

flutter speed index was defined by the approach to the M = 1.072 flutter point during the wind 

tunnel operation. Results from the CAP-TSD (linear) code are presented at twelve values of M 

covering the entire Mach number range over which the flutter data was measured. Results from 

the FAST program are presented for the limited range 0.338 I M I 0.96 since the method is 

restricted to subsonic freestreams. Overall, the linear CAP-TSD results compare well with the 

experimental data for subsonic as well as supersonic Mach numbers. Note that the subsonic 

FAST results are also in good agreement with the data. Such a result is not unexpected for this 

very thin wing of moderate sweep and taper at zero angle of attack. It does indicate that the wing 

properties are well-defined for benchmark purposes. 

In the subsonic Mach number range, the CAP-TSD and FAST calculations predict a slightly 

unconservative flutter speed, except at M = 0.338, by as much as 2% (Fig. 7 )  in comparison 

with the experimental data. In general though, the linear CAP-TSD results agree well with the 

FAST results. The good agreement in this three-way correlation between experiment, linear 

theory, and CFD flutter results gives confidence in the CAP-TSD code for flutter prediction. 

Comparisons of flutter characteristics from the linear and nonlinear CAP-TSD calculations 

with the experimental data are also given in Fig. 7. Three flutter points are plotted from the 

nonlinear CAP-TSD calculations corresponding to M = 0.678, 0.901, and 0.96. Comparisons 

between the two sets of CAP-TSD results show differences due to wing thickness and nonlinear 

effects. With increasing Mach number these differences become larger. For example, at M = 
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0.678, 0.901, and 0.96, the flutter speed index decreased by 1%, 5%, and 19%. respectively. 

The decrease in flutter speed at M = 0.901 is largely due to including wing thickness since there 

are no supersonic points in the flow at this condition. The decrease in flutter speed at M = 0.96 

is attributed to both wing thickness and nonlinear effects since an embedded supersonic region of 

moderate size was detected in the wing tip region. The nonlinear CAP-TSD results at both M = 

0.901 and 0.96 are slightly conservative in comparison with the experimental flutter speed 

index values. Nonetheless, the nonlinear CAP-TSD flutter results compare favorably with the 

experimental data, which is the first step toward validating the code for general transonic 

aeroelastic applications. 

Concludina Remarks 

A transonic unsteady aerodynamic and aeroelasticity code called CAP-TSD has been developed 

for application to realistic aircraft configurations. The code permits the calculation of unsteady 

flows about complete aircraft configurations for aeroelastic analysis in the flutter critical 

transonic speed range. The CAP-TSD code uses a time-accurate approximate factorization (AF) 

algorithm for solution of the unsteady transonic small-disturbance equation including entropy 

and vorticity effects. The AF algorithm has been shown to be very efficient for steady or 

unsteady transonic flow problems. It can provide accurate solutions in only several hundred 

lime steps yielding a significant computational cost savings when compared to alternative 

methods. For reasons of practicality and affordability, an efficient algorithm and a fast 

computer code are requirements for realistic aircraft applications. 

Results were presented for several configurations including the General Dynamics one-ninth 

scale F-16C aircraft model and the ONERA M6 wing, to demonstrate various capabilities of the 

CAP-TSD code. For the F-16C aircraft model, calculated steady pressure distributions 
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compared well with the experimental data. Unsteady pressures for the entire F-16C aircraft 

undergoing a rigid pitching motion were also presented. Comparisons with parallel wing alone 

results revealed aerodynamic interference effects of the additional aircraft components on wing 

unsteady pressures. These effects emphasize the importance of including all components in the 

calculation. The CAP-TSD code thus provides the capability of modeling complete aircraft 

configurations for realistic transonic unsteady aerodynamic and aeroelastic analyses. For the 

ONERA M6 wing, CAP-TSD results were presented both with and without entropy and vorticity 

effects. The results obtained by including these effects were in very good agreement with Euler 

results in terms of predicting the shock location and strength. The CAP-TSD code includes the 

entropy and vorticity effects while retaining the relative simplicity and cost efficiency of the 

small-disturbance potential formulation. Therefore, the capability provides the aeroelastician 

with an affordable method to analyze relatively difficult transonic cases. 

Results were also presented from a flutter analysis of a 45" sweptback wing. The flutter 

boundaries from CAP-TSD (linear) were in agreement with parallel subsonic linear theory 

results and compared well with the experimental flutter data for subsonic and supersonic 

freestream Mach numbers. The nonlinear CAP-TSD flutter results also compared favorably 

with the experimental data which is the first step toward validating the code for general 

transonic aeroelastic analysis of more complex configurations. 
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